2017 Technology Trend Watch: Quantum Computing

Recently, the World Economic Forum’s Expert Network and Global Future Councils, teamed up with the board of directors of Scientific American, to determine the top 10 breakout technologies for this year. They have selected each technology based on its potential to improve lives, transform industries and safeguard the planet. The experts were also looking for indications that the technologies have reached a level of maturity that would enable widespread take-up in the coming 3-5 years.

CIMGlobal team invites you to take a closer look at each technology in the upcoming series of articles.

Quantum Computing

With classic computers, data is expressed in one of two states that are either a 1 or a 0 (binary bits). On the other hand, quantum computers make use of quantum bits, or qubits, which can exist in both of these states at once, thus enabling many computations simultaneously, allowing for far more computing power, performed much more quickly, while using a lot less energy. 

Quantum computers’ almost limitless potential has only ever been matched by the difficulty and cost of their construction. Which explains why today the small ones that have been built have not yet managed to exceed the power of supercomputers. But progress is being made and in 2016 the technology firm IBM provided the public access to the first quantum computer in the cloud. This has already led to more than 20 academic papers being published using the tool and today more than 50 start-ups and large corporations worldwide are focused on making quantum computing a reality.

Just yesterday, a team of researchers at UNSW Sydney has made a major breakthrough in quantum computer design – “flip-flop qubits” which can make large-scale production of quantum chips highly-feasible.

By 2020, the world will most probably see its very first 10-qubit prototype silicon quantum integrated circuit. This goal has been set through an A$83 million deal that the team has struck between UNSW, the Australian and New South Wales governments, Telstra, and Australia’s Commonwealth Bank.

This quantum computing advancement means so much to the whole world, especially since we’re all aware of our need to conserve energy and find cleaner, sustainable sources. Current global consumption is 17.7 Terawatts of power which we derive from various sources such as coal, oil, natural gas, and alternative energies. However, this global energy consumption rate will even further increase by 56% between 2010 and 2040, according to the U.S Energy Information Administration.

It’s really high time to find ways for science and technology to help us become more energy-efficient. A future with traditional computers as oppose to quantum ones may not be the only disaster waiting to happen – remember, quantum computing offers the kind of technological capability that is millions of times more powerful than current systems – there are also the deadly and fast approaching consequences of global warming and power crises to consider. That’s why if quantum computers ever make it out of the lab, which at this point looks like they will and relatively soon, the whole world should look forward to that day as the quantum computing revolution will finally help us solve problems that seem impossible today.

Quantum Computing in Indiathere are many scientists doing experimental research on superconductors and in condensed matter physics whose work relates to quantum computing.

Sources: WEF, WSP

0 Comment

Leave a Comment

Your email address will not be published.